

使用Simulink建構微分方程

support@terasoft.com.tw Presenter:Michael Chen

Copyright © 2007 by Terasoft, Inc.

Agenda

- Simulink 基本操作介紹
- 一個自由度的動態系統微分方程建構
- 多個自由度的動態系統微分方程建構
- 非線性系統
- 離散時間系統建構

MATLAB&SIMULINK

Simulink 基本操作介紹

介紹 Simulink Library Browser

Simulink 函式庫

- Commonly used blocks 一般常用的方塊
- Continuous 連續時間方塊,如 Integerator, Derivative
- Discontinuities 非連續的方塊,如Saturation
- Discrete 離散時間方塊,如Unit Delay
- Logic and Bit Operations 邏輯或位元運算方塊 如邏輯 運算子(Logic operator), 關係運算子(Relational operator)
- Look-Up Tables 查表法方塊 如sine, cosine
- Math Operations 數學運算;如總和(sum),乘積(product)
- Model Verification 錯誤偵測
- Model-Wide Utilities Model 方塊的資訊,如Model Info

Simulink 函式庫 (續)

- Ports & Subsystems 阜與子系統方塊如 In1,Out1,Subsystem
- Signals Attributes 信號的屬性,如資料型態轉換 (Data Type Conversion)
- Signals Routing 信號的路由選擇,如 Switch, From, Goto
- Sinks 顯示或輸出資料的方塊,如Display, Scope
- Sources 訊號源方塊,如 Clock, Sine Wave, Constant, Pulse Generator
- User-Defined Functions 使用者定義的方塊,如 MATLAB Function, S-Function
- Additional Math & Discrete 其他數學與離散方塊

MATLAB&SIMULINK

🐴 Simulink Library Browser			_ 🗆 🗙									
File Edit View Help												
New +	Model Ctrl+N					∡ 新 mode	el icon		Simulin	kТ	且相	型
🔁 Open Ctrl+O	Library nonly Used E	Blocks Search Results	s: (none) Most Frequently User 🚺			/191						<u>ل</u> ارد
Close Ctrl+W				🐴 untitled	/							X
Preferences	>	>		File Fuit	<u>V</u> iev	w Display Diagram Simu	Ilation Analysis	Code Too	ols Help			
-Discontinuities		⊁	1 >			Library Browser	Ctrl+Shift+L	10.0	Normal	•	⊘ - #	
-Logic and Bit Operations						<u>M</u> odel Explorer	Ctrl+H					_
-Lookup Tables	Bus Creator	Bus Selector	Constant	Model Browse		Simulink <u>P</u> roject						_
				渣 untitl		Model Dependency <u>V</u> iewer	+					_
Model-Wide Utilities						Requirements at This Level	+					
-Ports & Subsystems						Model <u>B</u> rowser	•					
Signal Attributes	Convert	7 ⁻¹				Configure Toolbars						
Sinks			\rightarrow		J	Toolbars						
Sources					J	Status Bar						
Additional Math & Discrete	Data Type Conversion	Delay	Demux		5	Explorer Bar						
🗄 🛅 Aerospace Blockset					•	- <u>-</u>						
Communications System						<u>N</u> avigate	•					
Control System Toolbox	K Ts					<u>Z</u> oom	•					
E DSP System Toolbox		$1 \gg 1$			\checkmark	Smart <u>G</u> uides						
Data Acquisition Toolbox	7-1					MATLAB Deskton						
Embedded Coder					_	«		1				
🗄 🚹 Gauges Blockset	Discrete-Time Integrator	Gain	Ground	Ready			100%	. 			ode4	45
HDL Verifier			~	Licady	_		100%				UUE4	1 3
Showing: Simulink/Commonly Used Blocks								Ct	tatue ha	r		
				- 1				1		1		

www.terasoft.com.tw

TLAB&SIMULINK

於Model加入方塊

可以用從資料庫瀏覽器拖拉方塊到model裡面,方塊依字母的順序排列在函式庫裡

Strates (Construction of the construction of t

• Ctrl+滑鼠左鍵 從來源端到目的端

▲TeraSoft 鈦思科技

Training Course

ATLAB&SIMULINK

• 在訊號中間插入方塊,把方塊放在訊號線上

▲TeraSoft 鈦思科技

Training Course

• 連點滑鼠兩下開啟一個方塊參數,在欄位輸入 是當的值_____

調整方塊的大小

滑鼠點到指定的方塊;方塊有四個角,透過四 個角可以調整其方塊大小

標記方塊 點選方塊標籤然後標註方塊名,每個方塊的 名字都要是唯一的。

A share

點訊號線兩下輸入你要給的訊號名。

and the second

• 可以在model 空白處 連點兩下輸入文字註 解。

🎦 untitled *		X
<u>File Edit View D</u> isplay D	Diag <u>r</u> am <u>S</u> imulation <u>A</u> nalysis <u>C</u> ode <u>T</u> ools <u>H</u> elp	
	📲 🚳 🕶 🥅 🌜 🕪 💷 💿 🕶 10.0 Normal 💽 🥥 🕶 🛗 🖛	
Model Browser *= u	untitled	
🖻 untitled 🛛 🛞	De Muntitled	•
œ		
<u>د م</u>		
	1 1 1/2e-1 1/2e-1 test Saturation Out1	
	This model description	
«	x	
Ready	300%	ode45 🔡

&SIMULINK

MATLAB&SIMULINK

2 1 5

一個簡單的模型

一個自由度微分方程

- 方程式如右 mx + cx + kx = f , 二階方程式
 使用兩個積分器。
- 使用積分器實現微分。

微分方程式的實現

• 使用積分器建立連續系統

 二次微分經過積分器變成一次微分項,一次微分的函數 經過積分得原函數

- 建立不同狀態的代數關係
- 設定積分器的初始條件

連續時間系統:使用積分器(in continuous block library)

Training Course

- 系統的輸出是連續的變化
- 用積分的方式表示輸入與輸出的關係
 Example: 積分器(Integrator)
 Output is the integral of the input

$$\dot{y} = u \implies \dot{x} = u$$

 $y = x$

TLAB&SIMULINK

三種線性系統的表示方法

- 轉移函數(transfer function)
- 狀態空間(state space)
- 零點極點(zero-pole)

www.terasoft.com.tw

線性系統的表示方法**:**transfer function

• 假設 initial value 等於零

$m\ddot{x} + c\dot{x} + kx = f \longrightarrow mX(s)s^{2} + cX(s)s + kX(s) = F(s)$

Laplace transform

整理得如下轉移函數

$$G(S) = \frac{X(S)}{F(S)} = \frac{1}{ms^2 + cs + k}$$

ages (Training Course)

Transfer function block 設定 $G(S) = \frac{X(S)}{F(S)} = \frac{1}{ms^2 + cs + k}$

📲 untitled *		Function Block Parameters: Transfer Fcn
File Edit View Display D	Diagram <u>S</u> imulation <u>A</u> nalysis <u>C</u> ode <u>T</u> ools <u>H</u> elp	Transfer Fcn The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.
Model Browser *=	untitled	Parameters
🎦 untitled	🖲 🎦 untitled 🗸 🔻	Numerator coefficients:
		[1]
		Denominator coefficients: 分子分母系數 [m c k] Absolute tolerance: auto
	m.s [∠] +c.s+k	State Name: (e.g., 'position')
	Transfer Fcn	
Ready	200% ode45	OK Cancel Help Apply

Copyright © 2007 by Terasoft, Inc.

B&SIMULINK

- 常用表示法如下
 x = Ax + Bu
 y = Cx + Du
- $Ex:m\ddot{x} + c\dot{x} + kx = f$

Assume
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X \\ \dot{X} \end{bmatrix}$$

$$=>\begin{cases} \dot{x}_1 = x_2\\ m\dot{x}_2 + cx_2 + kx_1 = f \end{cases}$$
$$\dot{X} = \begin{bmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} X + \begin{bmatrix} 0\\ 1\\ -\frac{1}{m} \end{bmatrix} f$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \end{bmatrix} f$$

Simulation結果比較(DE,TF, SS)

21 11 5

TLAB&SIMULINK

微分方程式編輯器(differential equation editor)

Dee 的使用方法:Command Window 輸入dee

模擬結果比較(DE, TF, SS, DEE)

Exercise:非線性差分方程

Training Course

- 每年的人口跟以下參數有關
 1.前年的人口
 2.人口增加率,r(r=1.05)
 3.其它變數, K (K=1e6)
 -p(n)=r*p(n-1)*(1-p(n-1)/K) (非線 性,p(n-1)的平方造成非線性)
- Initial value for population is needed! (p(0)=100000)

MATLAB&SIMULINK

Solver參數設定

- 固定步階解題器: ode45,ode23...etc.
- 可變步階幾題器:
 ode8,ode5....etc.
- 離散解題器

📣 Sim	ulation Para	meters: unt	titled		_ 🗆 X
Solver	Workspace I/O	Diagnostics	Advanced	Real-Time W	orkshop
Simul Start	ation time time: 0.0	Stop tin	ne: 10.0		
Solve Type:	er options : Fixed-step	d iscret	e (no continuo	ous states)	⊡
Fixed step size: 0.3 Mode: Auto					
- Outpu	ut options				
Refi	ne output	7	Refine fa	ictor: 1	
		OK	Cancel	Help	Apply

連續時間解題器(solver)

- 解題器的主要功能是計算方塊的輸出
- 在連續系統,用積分來表示微分的狀態
- 不同的連續解題器使用不同的方法(數值分析)來逼近 積分的結果
 - 固定步階(Fixed step): ode5, ode4, ode3, ode2, ode1
 - 可變步階(Variable step): ode45, ode23, ode113, ode15s, ode23s, ode23t ode23tb

錯誤控制(Error Control)

- 可變步階解題器可以用來做錯誤的控制
- 絕對誤差: 積分錯誤的上限
- 相對誤差: 積分錯誤的上限除以變數的值
- 解題器可以滿足其中之一!

&SINTULINK

步階的計算 (Variable Step)

SIMULINK 用積分積derivatives的方式計算連續狀態

如誤差在可以接受範圍,模擬將繼續。否則將減小步階再做積分。

3&SIMULINK

- 假如錯誤可以接受,模擬將繼續。否則將減小步階再積分。
- 步階的大小調整到適合的大小。

Setting Parameters

多自由度的動態系統

• EX: 自由度為2的運動系統如下圖

- ・ 其聯立方程式如下

 m₁x₁ + c₁x₁ + k₁x₁ + m₂x₂ =
 - $\begin{cases} m_1 \ddot{x}_1 + c_1 \dot{x}_1 + k_1 x_1 + m_2 \ddot{x}_2 = 0 \\ m_2 \ddot{x_2} + c_2 (\dot{x}_2 \dot{x_1}) + k_2 (x_2 x_1) = 0 \end{cases}$
- initial value $A x_2(0) = 1, x_1(0) = \dot{x}_1(0) = \dot{x}_2(0) = 0$

自由度為2的動態系統Simulink model 如下

• 線性與非線性

假設 x₁,x₂ ,其output 為 y₁,y₂ 滿足 input 的線性組合 αx₁+x₂ ,其 output αy₁+xy₂ , ∀α∈R 則為線性,反之 則為非線性 ▲TeraSoft 鈦思科技

Training Course

Example:高空彈跳

• 運動方程式如下 mÿ = mg + b(x) - a₁ ẋ - a₂ |ẋ|ẋ b(x) = $\begin{cases} -k(x - x_0) & (x > x_0) \\ 0 & (x \le x_0) \end{cases}$

AB&SIMULINK

x是落下距離,x0彈簧的自然長,g重力加速度,m質量,k彈性係數,^{a1,a2} 空氣阻力係數。

• b(x) 及 a2 x 非線性項,所以此運動方程式非線性微分方程式。直接建模如下。

Nonlinear Simulink model 與模 擬結果

離散時間系統建構

- 固定時間間隔更新系統的狀態
- 輸出跟現在的輸入或前一個輸入或輸出有關 y(n)=u(n)+u(n-1)+3y(n-1) time=n x sampling time
- 離散動態系統: 離散狀態(discrete state)
 - 前一個output 表示一個 狀態(state)
 - 離散狀態相當於存前一個訊號值的記憶體!

離散系統函式庫

• Zero-Order Hold

- 把連續的訊號轉成離散的訊號
- 設定取樣速率

Unit Delay

- Input延遲一個單位時間 (sampling time)
- 設定initial value

離散系統:差分方程 (Difference equation) 使用Unit Delay

設計步驟

• 決定block需要幾個delay:

Ex: y(n-1) 表示一個delay; y(n-2)表示兩個delay

- 根據方程式 連接各個input 與output blocks
- 設定初始值(initial value).
- 設定取樣時間(sampling time).

線性離散系統

- Z-transform
 - x(n) --> X(z)
 - x(n-1) --> z⁻¹X(z) (delay one unit)

Training Course

• y(n)=u(n)+u(n-1)+3y(n-1)--> $Y(z)=U(z)+z^{-1}U(z)+3z^{-1}Y(z)$

-->
$$\frac{Y(z)}{U(z)} = \frac{1+z^{-1}}{1-3z^{-1}}$$

Filter representation: num=[1 1], den=[1 -3]

MeraSoft 鈦思科技

Z-Domain表示式

• 濾波器(filter): num=[n0 n1 n2], den=[d0 d1]

$$\frac{n_0 + n_1 z^{-1} + n_2 z^{-2}}{d_0 + d_1 z^{-1}}$$

• 轉移函數(transfer function): num=[n0 n1 n2], den=[d0 d1 0]

Training Course

$$\frac{n_{_{0}}z^{^{2}}+n_{_{1}}z^{^{1}}+n_{_{2}}}{d_{_{0}}z^{^{2}}+d_{_{1}}z}$$

• 零點極點Zero-pole: gain=K, zeros=[z1 z2], poles=[0 p1] $K \frac{(z-z_1)(z-z_2)}{z(z-p_1)}$

▲TeraSoft 鈦思科技

Training Course

Moving average filter 5階

• Moving average filter 方程式如下

$$y_n = \frac{1}{5} (u_n + u_{n-1} + u_{n-2} + u_{n-3} + u_{n-4})$$

計算目前的 output 與前四個 output 的平均

$$Y(z) = \frac{1}{5} \left(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} \right) U(z)$$

$$H(z) = \frac{1 + z^{-1} + z^{-2} + z^{-3} + z^{-4}}{5}$$

B&SIMULINK

Moving average filter 5階(續)

• 組成的 Simulink model 如下

$$f(t) = f_0 + \frac{f_{t \operatorname{arg} et} - f_0}{T_{t \operatorname{arg} et}} \times t$$

China fàthat

-	🚡 Source Block Parameters: Chirp Signal
	chirp (mask) (link)
	Output a linear chirp signal (sine wave whose frequency varies linearly with time).
ļ	Parameters
ļ	Initial frequency:
	0.1
	Target time:
	100
l	Frequency at target time:
	10
	✓ Interpret vector parameters as 1-D
	QK Cancel Help Apply

計算目前的 output 與前四個 output 的平均

B&SIMULINK

Moving average filter 5階(續)

可以直接透過discrete filter block 設定轉
 移函數分子與分母參數

🔭 meanfilt_test 📃 🗖 🗾 🚬	Function Block Parameters: Discrete Filter
Eile Edit Yiew Display Diagram Simulation Analysis Code Tools Help	Discrete Eilter
🖏 🕶 📰 🖨 🗢 🖓 🔐 🌒 🕶 🤀 💊 🕪 📧 🔍 🔹 🔹 10.0	Disclete Filter
meanfilt_test	Independently filter each channel of the input over time using a discrete IIR filter. Specify the nu
meanfil_test	denominator coefficients in ascending order of powers of 1/z.
Image: Regularized state	A DSP System Toolbox license is required to use a filter structure other than Direct form II.
	Main Data Types State Attributes
Chirp Signal Zero-Order	Filter structure: Direct form II Data Source Volue
Subsystem Scope	Numerator: Dialog Value
<u>1+1z⁻¹+1z⁻²+1z⁻²+2</u> -4	Denominator: Dialog [5]
Discrete Filter 設定 轉移	函數分子與分型參數 ⁰
»	OK Cancel Help Apply
Ready 150% FixedStepDiscrete	

MATLAB&SIMULINK

比較模擬結果

Chirp signal frequency 0.1-50Hz

Chirp signal 原始訊號

Chirp signal 經過moving average filter

Chirp signal 經過moving average filter 使用discrete filter block

比較模擬結果(續)

- 由結果知:直接建模實現濾波器與用discrete filter block
 輸入濾波器分子分母參數結果是一致的。
- 由圖知 訊號在頻率20 Hz 與 40 Hz 被壓抑。
- 由freqz 指令做頻率響應圖驗證。

Copyright © 2007 by Terasoft, Inc.

比較模擬結果(續)

因為頻率軸經過正規劃, Normalized Frequency 0~1
 對應到0~50Hz,所以0.4與0.8對應到20與40 Hz。

Source Block Parameters: Chirp Signal				
chirp (mask) (link)				
Output a linear chirp signal (sine wave whose frequency varies linearly with time).				
Parameters				
Initial frequency:				
0.1				
Target time:				
10				
Frequency at target time:				
50				
Interpret vector parameters as 1-D				
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply				

3&SIMULINK

Multi-rate system 模擬

- 不同取樣速率的離散系統: upsamlping, downsampling, decimation, interpolation
- LPF(anti-aliasing filter) 加在 Upsampling 之後 downsampling 之前

AB&SIMULINK

Example : Multi-rate model (up sampling)

MATLAB&SIMULINK

Sec. Sec.

觀察經過filter 後的訊號

LAB&SIMULINK

Example : Multi-rate model (down sampling)

• 取樣時間由0.2秒取樣一次降到0.4秒取樣一次。原始訊號取樣速率0.6 秒。Overall 來講最後取樣速率是原本的1.5倍。

Hybrid system的建模

• 連續系統和離散系統混合

Example:恆溫器的水槽的自動溫度調節

把水溫作為**T**[℃]的話,那個時間變化用下 面的方程式表示。 $C\frac{dT}{dt} = Q_H + Q_R$ _{一階;須一個積分器}

水溫控制系統

 C水槽系全部的熱容[kcal/℃],Q_H、Q_R各表示 來自加熱器及外部的單位時間的發熱量
 [kcal/sec]。其中

$$Q_R = \frac{T_R - T}{R}$$

R表示單位時間的熱阻的比例係數[sec.℃/kcal]
 , T_R室溫。關於室溫,考慮日常的溫度變化
 T_R(0) ±4℃的正弦波表示。

 $T_R(t) = T_R(0) + 4\sin\left(\frac{2\pi}{24 \times 3600}t\right)$

沒有加熱器的model

• 由三個等式導出底下的model

$$C\frac{dT}{dt} = Q_H + Q_R$$
$$Q_R = \frac{T_R - T}{R}$$

$$T_R(t) = T_R(0) + 4\sin\left(\frac{2\pi}{24 \times 3600}t\right)$$

Consess Consecution of Course

沒有加熱器模擬結果

• Initial 溫度 設20度,室溫在20正負4度變化 觀察三 天結果如下。

有加熱器的model(band-band)

 水溫變得低的話打開加熱器的開關,反過來變得 高的話切斷控制開關。

&SINTULINK

Compared (Consection 2015)

MATLAB&SIMULINK

有加熱器模擬結果

Sampling time =1800sec

Sampling time =900sec Copyright

opyright © 2007 by Terasoft, Inc.

▲TeraSoft 鈦思科技

Training Course

0

MATLAB&SIMULINK

其它條件模擬結果

Q_H 從原本 86/3600 降到 40/3600

www.terasoft.com.tw

Q & A

Thank you very much

Have a good time